Sixth Semester B.E. Degree Examination, Jan./Feb.2021 Aerodynamics – II

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Use of appropriate Gas/Shock tables may be permitted.

Module-1

- a. Consider unsteady and compressible flow, obtain differential form of continuity equation using control volume approach. (10 Marks)
 - b. Show that the speed of sound in a calorically perfect gas is a function of temperature only.
 (06 Marks)

OR

- 2 a. Derive an expression for Area ratio as a function of Mach number and explain the variation of area ratio with Mach number with neat graph. (10 Marks)
 - b. Air is discharged from a reservoir at $P_0 = 6.91$ bar and $T_0 = 598$ K through a nozzle to an exit pressure of 0.98 bar. If the flow rate is 3600 kg/hr determine for isentropic flow:
 - (i) Throat area, pressure and velocity.
 - (ii) Exit area, Mach number and
 - (iii) Maximum velocity.

(06 Marks)

Module-2

- 3 a. Derive Prandtl-Meyer relation for normal shock waves with usual notations. (08 Marks)
 - b. The state of a gas (r = 1.3, R = 0.469 kJ/kg-K) upstream of a normal shock wave is given by the following data: $M_1 = 2.5$, $P_1 = 2$ bar, $T_1 = 275$ K. Calculate the Mach number, pressure, temperature and velocity of the gas downstream of the shock. (08 Marks)

OR

4 a. Derive the Rankine-Hugoniot relation for a normal shock wave,

$$\frac{P_2}{P_1} = \frac{\frac{r+1}{r-1} \frac{S_2}{S_1} - 1}{\frac{r+1}{r-1} - \frac{S_2}{S_1}}$$

(08 Marks)

- b. The velocity of a normal shock wave moving into stagnant air (p = 1.0 bar, T = 290 K) is 500 m/s. If the area of cross-section of the duct is constant determine,
 - (i) Pressure (ii) Temperature (iii) Velocity of air (iv) Stagnation temperature and
 - (v) Mach number imparted upstream of the wave front.

(08 Marks)

Module-3

- 5 a. For oblique shock, obtain a relation for θ - β -M. (10 Marks)
 - b. A uniform supersonic stream with $M_1 = 3.0$, $p_1 = 1$ atm and $T_1 = 288$ K encounters a compression corner which deflects the stream by an angle $\theta = 20^\circ$. Calculate the P_2 , T_2 , M_2 , P_{02} and T_{02} behind the shock wave. Take $\beta = 37.8^\circ$. (06 Marks)

OR

- Explain Fanno line with h-s diagram and show that the gas velocity at the maximum entropy 6 (08 Marks) point (F) on the Fanno line is sonic.
 - Briefly explain Shock Polar.

(08 Marks)

- Derive Basic Potential equation for compressible flow. (10 Marks)
 - Derive the expression for pressure coefficient.

(06 Marks)

OR

- Derive Prandtl-Galuret compressibility correction for compressible and incompressible flow 8 (10 Marks) relation.
 - Explain Von Karman rule for Transonic flow.

(06 Marks)

Module-5

- Explain velocity measurement for,
 - (i) Incompressible (ii) Compressible (iii) Supersonic flow.

(10 Marks)

Briefly explain open circuit supersonic wind tunnel.

(06 Marks)

- 10 Write short notes on:
 - Shock tube. a.
 - Shadow technique.
 - Flow visualization
 - Schlieren technique.

(16 Marks)